This is an electronic version of the final report. No signatures are necessary.

DUPONT HASKELL GLOBAL CENTERS FOR HEALTH & ENVIRONMENTAL SCIENCES

Discovery Toxicology Group

Biopersistence and Pharmacokinetic Screen in the Rat

WORK REQUEST: 17199 SERVICE CODE: 415 HASKELL NUMBER: 28072 DUPONT REPORT NUMBER: 24281

TESTING SOP NUMBER: BT004-T-002 STUDY START DATE: 13-June-2007 STUDY END DATE: 21-June-2007

NOTEBOOK(s): E-111389-AV

WORK BY: Scott M. Krenzel, Associate Scientist

Michael P. Mawn, Senior Research Chemist

STUDY DIRECTOR: Shawn A. Gannon, Senior Staff Toxicologist

REPORT ISSUE DATE: 13-February-2008

STUDY DESIGN

Test Substance: HFPO Dimer Acid Ammonium Salt

Lot/Batch Number: 111593-74

Purity: 84.5% (dose corrected for purity)

Species: Rat

Strain: Crl:CD(SD)

Vendor: Charles River Laboratories, Raleigh, North Carolina, U.S.A.

Sex: Male and Female

Route: Oral

Age at Study Start: 7-12 weeks
Total Group Size: 3/sex/dose level
Dose Frequency: Single dose
Dose Vehicle: Water

Dose: Low dose 10 mg/kg, high dose 30 mg/kg

Dose Volume: 4 mL/kg

Blood Sample Time Points: 0, 0.25, 0.5, 1, 2, 4, 8, 12, 24, 48, 72, 96, 120, 144, and 168 hours

OBJECTIVE

To generate preliminary pharmacokinetic data. Fat and liver were analyzed for parent compound to provide an estimate of tissue:plasma ratio.

METHODS

LC/MS Sample Analyses

A. Plasma Samples

The plasma samples were received and stored frozen prior to laboratory use. The samples were prepared for analysis by pipeting 150 μ L acetonitrile into a 1.7 mL microcentrifuge tube, and pipeting 50.0 μ L of plasma sample. The sample tubes were then vortexed for 1 minute and centrifuged at 14,000 RCF for 30 minutes at 20 °C temperature. After centrifugation, 100 μ L of sample supernatant was placed into a HPLC vial and 400 μ L of HPLC grade water was added and mixed. As necessary, additional sample dilutions were performed using the 15% acetonitrile in HPLC grade water solvent to ensure that the sample responses were within the calibration curve.

B. Liver and Fat Samples

The liver and fat samples were received and stored frozen prior to laboratory use. The liver tissue samples were extracted in Acetonitrile with 4% perchloric acid while the fat samples were extracted in isopropyl alcohol. The calibration standards were prepared in the appropriate matched solvents.

1. Fat and Liver Extract Preparation.

The fat and liver samples were preprocessed by chopping the tissue samples into small pieces and weighing (0.5 grams) into disposable 15-mL polypropylene centrifuge tubes. Five 5/32" ball bearings were added to each tube, and a pipet was used to add $5000~\mu L$ of the appropriate extraction solvent. The tubes were sealed with parafilm, and inserted into a SPEX Certiprep Genogrinder and homogenized for 4 minutes at 1400 strokes/minute. After homogenization, the tubes were centrifuge at 4125 rpm for 20 min at room temperature. The extract supernatant was transferred into glass vials and frozen prior to further sample preparation.

2. Fat and Liver Extract Analysis.

Approximately 100 mg of Envi-Carb graphitized carbon sorbent was placed into a 1.7-mL microcentrifuge tube. A pipet was used to add 50.0 μ L of glacial acetic acid directly to the sorbent. Next, a pipet was used to add 1000 μ L of sample extract into the centrifuge tube. The tubes were capped, vortexed briefly, and then centrifuged at 10,000 RCF for 10 minutes at room temperature. After centrifugation, a pipet was used to add 525 μ L of the 1.7-mL microcentrifuge tube supernatant into a new 1.7 mL microcentrifuge tube and 475 μ L of HPLC grade water and mixed. The samples were centrifuged at 10,000 RCF for 5 minutes at room temperature, and supernatant transferred into HPLC vials for analysis. As necessary, additional sample dilutions were performed using the matched solvent to ensure that the sample responses were within the calibration curve

The prepared samples were analyzed by LC/MS using the following parameters:

HPLC Instrument: Agilent Model 1100

MS Instrument: Quattro Micro, Micromass

LC Parameters:

Column: Zorbax RX-C8, 150 x 2.1 mm, 5 µm particle size Mobile Phase: A: 0.15% Acetic acid in NANOpure® water

B: 0.15% Acetic acid in Acetonitrile

Column Temperature: 30°C Injection Volume: 50 µL

MS Parameters:

Capillary Voltage: 3.20 kV
Source Temperature: 120°C
Desolvation Temperature: 300°C
Cone Gas Flow: 40 L/Hr
Desolvation Gas Flow: 400 L/Hr

Collision Gas and Pressure: Argon, 0.00391 mbar Ionization Mode: Electrospray, Negative Ion

Divert Valve: 0-3 minutes to waste, 3-end to source Data Acquisition Function: MRM of mass pair: $329.0 \rightarrow 285.0$

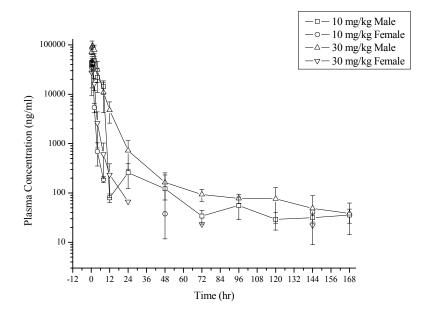
0.0 to 6.0 minutes plasma 0.0 to 11 minutes liver, fat

Collision Energy: 5 eV

Dwell 0.100 seconds

Cone Voltage: 9 V

HPLC Gradient	Total Time	Flow Rate		
(Plasma Samples)	(min)	(mL/min)	A(%)	B(%)
	0.00	0.600	90	10
	0.50	0.600	90	10
	2.50	0.600	5	95
	4.00	0.600	5	95
	4.10	0.600	90	10
	6.00	0.600	90	10


HPLC Gradient	Total Time	Flow Rate		
	(min)	(mL/min)	A(%)	B(%)
	0.00	0.600	90	10
	1.50	0.600	90	10
	6.00	0.600	5	95
	8.00	0.600	5	95
	8.10	0.600	90	10
	11.00	0.600	90	10

RESULTS

The individual plasma sample results are provided in Appendix A
The individual liver sample results are provided in Appendix B
The individual fat sample results are provided in Appendix C

Plasma

Graph:

Clearance Time (hr)

	10 mg/kg	30 mg/kg
Male	12	22
Female	4	8

Comments:

The plasma LOQ was approximately 20 ng/mL. Based on the experimental design, the pharmacokinetic graphs resulting from this class of chemicals makes traditional methods of half-life calculation inappropriate. In order to provide a basis for comparing these chemicals to each other, the clearance time of the analyte will be calculated instead. In traditional pharmacokinetics an analyte is considered to be completely cleared after 98.4% of the analyte is cleared from the plasma.

Tissue/plasma ratio at sacrifice

Fat: All fat samples below LOQ for males and females.

Liver: 10 mg/kg male = 2.2; 30 mg/kg males = 0.8. Female plasma sample

were below LOQ at sacrifice so T:P ratio not calculated.

Comments: The tissue LOQ was approximately 20 ng/g.

Appendix A Individual LC/MS Plasma Sample Results

10 mg/k	g results														
	<u> </u>				H-28072	Plasma C	Concentra	tion for th	ne specific	ed timepo	int (ng/mL)				
Rat		15	30	1	2	4	8	12	24	48	72	96	120	144	168
Number	Predose	min	min	Hour	Hour	Hour	Hour	Hour	Hour	Hour	Hour	Hour	Hour	Hour	Hour
Rat #1	<loq< td=""><td>36000</td><td>42400</td><td>39400</td><td>60800</td><td>33500</td><td>18200</td><td>97.5</td><td>2310</td><td>248</td><td>37.3</td><td>70.3</td><td>42.4</td><td>37.1</td><td>35.3</td></loq<>	36000	42400	39400	60800	33500	18200	97.5	2310	248	37.3	70.3	42.4	37.1	35.3
Rat #2	<loq< td=""><td>43900</td><td>53700</td><td>45000</td><td>56100</td><td>21800</td><td>15200</td><td>73.9</td><td>354</td><td>71.5</td><td>42.6</td><td>24.4</td><td>24.7</td><td>25.4</td><td>47.3</td></loq<>	43900	53700	45000	56100	21800	15200	73.9	354	71.5	42.6	24.4	24.7	25.4	47.3
Rat #3	<loq< td=""><td>47200</td><td>37000</td><td>50900</td><td>28400</td><td>11000</td><td>9620</td><td>68.0</td><td>162</td><td>45.9</td><td>22.1</td><td>72.5</td><td>20.6</td><td>32.3</td><td>24.6</td></loq<>	47200	37000	50900	28400	11000	9620	68.0	162	45.9	22.1	72.5	20.6	32.3	24.6
Rat #4	<loq< td=""><td>39300</td><td>40900</td><td>43500</td><td>4260</td><td>776</td><td>176</td><td>1380</td><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td>41.0</td><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	39300	40900	43500	4260	776	176	1380	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td>41.0</td><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td>41.0</td><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td>41.0</td><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td>41.0</td><td><loq< td=""></loq<></td></loq<></td></loq<>	<loq< td=""><td>41.0</td><td><loq< td=""></loq<></td></loq<>	41.0	<loq< td=""></loq<>
Rat #5	<loq< td=""><td>37000</td><td>49200</td><td>45000</td><td>6550</td><td>983</td><td>168</td><td>2810</td><td><loq< td=""><td>37.9</td><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	37000	49200	45000	6550	983	168	2810	<loq< td=""><td>37.9</td><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	37.9	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""></loq<></td></loq<>	<loq< td=""></loq<>
Rat #6	<loq< td=""><td>27500</td><td>40800</td><td>37300</td><td>5410</td><td>318</td><td>217</td><td>11300</td><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	27500	40800	37300	5410	318	217	11300	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""></loq<></td></loq<>	<loq< td=""></loq<>
30 mg/k	g results														
					H-28072	Plasma C	Concentra	tion for th	ne specific	ed timepo	int (ng/mL)				
Rat		15	30	1	2	4	8	12	24	48	72	96	120	144	168
Number	Predose	min	min	Hour	Hour	Hour	Hour	Hour	Hour	Hour	Hour	Hour	Hour	Hour	Hour
Rat #1	<loq< td=""><td>78100</td><td>121000</td><td>93500</td><td>88000</td><td>38400</td><td>10800</td><td>5720</td><td>765</td><td>264</td><td>No sample</td><td>106</td><td>87.4</td><td>135</td><td>94.2</td></loq<>	78100	121000	93500	88000	38400	10800	5720	765	264	No sample	106	87.4	135	94.2
Rat #2	<loq< td=""><td>63100</td><td>65400</td><td>96500</td><td>93100</td><td>41300</td><td>17700</td><td>6340</td><td>1120</td><td>140</td><td>109</td><td>86.5</td><td>53.9</td><td>28.9</td><td>55.3</td></loq<>	63100	65400	96500	93100	41300	17700	6340	1120	140	109	86.5	53.9	28.9	55.3
Rat #3											(2.0	5 00	• • •		
	<loq< td=""><td>73600</td><td>88100</td><td>96500</td><td>56200</td><td>15000</td><td>4350</td><td>2290</td><td>283</td><td>86.3</td><td>63.9</td><td>59.0</td><td>39.2</td><td>22.6</td><td>21.3</td></loq<>	73600	88100	96500	56200	15000	4350	2290	283	86.3	63.9	59.0	39.2	22.6	21.3
Rat #4	<loq <loq< td=""><td>73600 43400</td><td>88100 59700</td><td>96500 44500</td><td>56200 11200</td><td>15000 611</td><td>4350 148</td><td>2290 118</td><td>283 67.8</td><td>86.3 <loq< td=""><td>63.9 <loq< td=""><td>59.0 <loq< td=""><td>39.2 <loq< td=""><td>22.6 <loq< td=""><td>21.3 <loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></loq 	73600 43400	88100 59700	96500 44500	56200 11200	15000 611	4350 148	2290 118	283 67.8	86.3 <loq< td=""><td>63.9 <loq< td=""><td>59.0 <loq< td=""><td>39.2 <loq< td=""><td>22.6 <loq< td=""><td>21.3 <loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	63.9 <loq< td=""><td>59.0 <loq< td=""><td>39.2 <loq< td=""><td>22.6 <loq< td=""><td>21.3 <loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	59.0 <loq< td=""><td>39.2 <loq< td=""><td>22.6 <loq< td=""><td>21.3 <loq< td=""></loq<></td></loq<></td></loq<></td></loq<>	39.2 <loq< td=""><td>22.6 <loq< td=""><td>21.3 <loq< td=""></loq<></td></loq<></td></loq<>	22.6 <loq< td=""><td>21.3 <loq< td=""></loq<></td></loq<>	21.3 <loq< td=""></loq<>
	-														

Note: Rats 1-3 are male, 4-6 are female.

Appendix B Individual LC/MS Liver Sample Results

		Liver	Plasma		Average	S.D.	
		Conc (ng/g)	Conc (ng/mL)	T:P ratio	T:P ratio	T:P ratio	
Male	10 mg/kg Rat #1	43.6	35.3	1.24			
	10 mg/kg Rat #2	90.5	47.3	1.91			
	10 mg/kg Rat #3	84.2	24.6	3.42	2.19	1.12	
Female	10 mg/kg Rat #4	54.1	<loq< td=""><td>NA</td><td></td><td></td></loq<>	NA			
	10 mg/kg Rat #5	<loq< td=""><td><loq< td=""><td>NA</td><td></td><td></td></loq<></td></loq<>	<loq< td=""><td>NA</td><td></td><td></td></loq<>	NA			
	10 mg/kg Rat #6	20.6	<loq< td=""><td>NA</td><td>NA</td><td>NA</td></loq<>	NA	NA	NA	
Male	30 mg/kg Rat #1	48.7	94.2	0.52			
	30 mg/kg Rat #2	44.7	55.3	0.81			
	30 mg/kg Rat #3	21.8	21.3	1.02	0.78	0.25	
Female	30 mg/kg Rat #4	<loq< td=""><td><loq< td=""><td>NA</td><td></td><td></td></loq<></td></loq<>	<loq< td=""><td>NA</td><td></td><td></td></loq<>	NA			
	30 mg/kg Rat #5	<loq< td=""><td><loq< td=""><td>NA</td><td></td><td></td></loq<></td></loq<>	<loq< td=""><td>NA</td><td></td><td></td></loq<>	NA			
	30 mg/kg Rat #6	<loq< td=""><td><loq< td=""><td>NA</td><td>NA</td><td>NA</td></loq<></td></loq<>	<loq< td=""><td>NA</td><td>NA</td><td>NA</td></loq<>	NA	NA	NA	

Appendix C Individual LC/MS Fat Sample Results

		Fat	at Plasma		Average	S.D.
		Conc (ng/g)	Conc (ng/mL)	T:P ratio	T:P ratio	T:P ratio
Male	10 mg/kg Rat #1	<loq< td=""><td>35.3</td><td>NA</td><td></td><td></td></loq<>	35.3	NA		
	10 mg/kg Rat #2	<loq< td=""><td>47.3</td><td>NA</td><td></td><td></td></loq<>	47.3	NA		
	10 mg/kg Rat #3	<loq< td=""><td>24.6</td><td>NA</td><td>NA</td><td>NA</td></loq<>	24.6	NA	NA	NA
		<loq< td=""><td></td><td></td><td></td><td></td></loq<>				
Female	10 mg/kg Rat #4	<loq< td=""><td><loq< td=""><td>NA</td><td></td><td></td></loq<></td></loq<>	<loq< td=""><td>NA</td><td></td><td></td></loq<>	NA		
	10 mg/kg Rat #5	<loq< td=""><td><loq< td=""><td>NA</td><td></td><td></td></loq<></td></loq<>	<loq< td=""><td>NA</td><td></td><td></td></loq<>	NA		
	10 mg/kg Rat #6	<loq< td=""><td><loq< td=""><td>NA</td><td>NA</td><td>NA</td></loq<></td></loq<>	<loq< td=""><td>NA</td><td>NA</td><td>NA</td></loq<>	NA	NA	NA
		<loq< td=""><td></td><td></td><td></td><td></td></loq<>				
Male	30 mg/kg Rat #1	<loq< td=""><td>94.2</td><td>NA</td><td></td><td></td></loq<>	94.2	NA		
	30 mg/kg Rat #2	<loq< td=""><td>55.3</td><td>NA</td><td></td><td></td></loq<>	55.3	NA		
	30 mg/kg Rat #3	<loq< td=""><td>21.3</td><td>NA</td><td>NA</td><td>NA</td></loq<>	21.3	NA	NA	NA
		<loq< td=""><td></td><td></td><td></td><td></td></loq<>				
Female	30 mg/kg Rat #4	<loq< td=""><td><loq< td=""><td>NA</td><td></td><td></td></loq<></td></loq<>	<loq< td=""><td>NA</td><td></td><td></td></loq<>	NA		
	30 mg/kg Rat #5	<loq< td=""><td><loq< td=""><td>NA</td><td></td><td></td></loq<></td></loq<>	<loq< td=""><td>NA</td><td></td><td></td></loq<>	NA		
	30 mg/kg Rat #6	<loq< td=""><td><loq< td=""><td>NA</td><td>NA</td><td>NA</td></loq<></td></loq<>	<loq< td=""><td>NA</td><td>NA</td><td>NA</td></loq<>	NA	NA	NA